Tetrahedron Letters 51 (2010) 875-877

Contents lists available at ScienceDirect

**Tetrahedron Letters** 

journal homepage: www.elsevier.com/locate/tetlet

# Synthesis of aspergillide A from a synthetic intermediate of aspergillide B

## Tomohiro Nagasawa, Shigefumi Kuwahara\*

Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan

#### ARTICLE INFO

Article history: Received 13 November 2009 Revised 7 December 2009 Accepted 8 December 2009 Available online 11 December 2009

*Keywords:* Aspergillide Cytotoxic Macrolide Epimerization ABSTRACT

The first synthesis of aspergillide A, a cytotoxin produced by a marine-derived fungus, has been achieved from a synthetic intermediate of aspergillide B by using a proline-mediated epimerization of a 2,6-transsubstituted tetrahydropyran-2-acetaldehyde intermediate into the corresponding cis-isomer via a retro-oxy-Michael sequence as the key transformation.

© 2009 Elsevier Ltd. All rights reserved.

etrahedro

In the course of screening for bioactive substances from marinederived fungi, Kusumi and co-workers isolated three cytotoxic compounds, aspergillides A-C, from a bromine-modified 1/2PD (potato-dextrose) culture medium of Aspergillus ostianus strain 01F313, and proposed their structures to be 14-membered macrolides I, II, and III, respectively, based on spectroscopic analyses including NOESY experiments and the modified Mosher method (Fig. 1).<sup>1</sup> The proposed structure of aspergillide C (III) was confirmed by our total synthesis,<sup>2</sup> while the stereochemical assignment of aspergillides A and B was found to be incorrect through the total synthesis of I and II by Hande and Uenishi.<sup>3</sup> They revealed that the physical and spectral data of their synthetic compound I were identical to those reported by Kusumi and co-workers for aspergillide B, and the data of synthetic II did not match those reported either for aspergillide A or for aspergillide B. These results enabled them to conclude that the genuine structure of aspergillide B must be 2 (Fig. 2), and the real structure of aspergillide A should be reinvestigated. Ooi and co-workers answered the question regarding the structure of aspergillide A by means of X-ray crystallographic analysis of its *m*-bromobenzaoate derivative, which clarified that aspergillide A was the C3 epimer of aspergillide B (compound 1, Fig. 2) possessing a 3,7-cis relationship as well as 3*R* absolute configuration.<sup>4</sup>

Prompted by the unique molecular architecture of aspergillides A (1), B (2), and C (III), the latter two of which possess a very rare 2,6-trans-substituted tetrahydro- and dihydropyran structural unit, respectively, embedded in a 14-membered macrolide structure,<sup>5</sup> three additional syntheses of  $2^6$  and an additional synthesis

\* Corresponding author. Tel./fax: +81 22 717 8783.

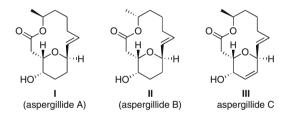



Figure 1. Originally proposed structures of aspergillides A (I), B (II), and C (III).

of  $III^7$  have been published. However, no report concerning the synthesis of aspergillide A (1) has appeared to date. We describe herein the first synthesis of aspergillide A via a proline-mediated isomerization of a 2,6-trans-substituted tetrahydropyran-2-acetal-dehyde intermediate into the corresponding cis-isomer.

Since aspergillide A (1) and aspergillide B (2) are epimeric to each other at the alkoxy-bearing C3 position  $\beta$  to the lactone carbonyl, we envisaged that they might be interconvertible via a retro-oxy-Michael/oxy-Michael equilibrium sequence. Concerned about the possible formation of a  $\gamma$ -lactone from **2** through the intramolecular attack of the C4 hydroxyl to the carbonyl group

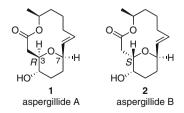
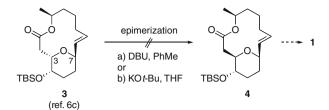
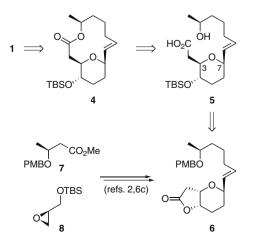




Figure 2. Revised stereochemistries of aspergillides A and B.

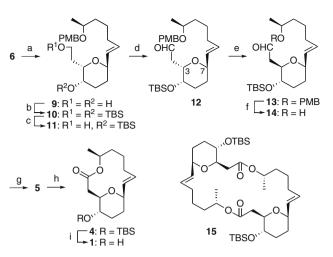


E-mail address: skuwahar@biochem.tohoku.ac.jp (S. Kuwahara).

<sup>0040-4039/\$ -</sup> see front matter @ 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.12.032




Scheme 1. Attempted epimerization of TBS-protected aspergillide B (3) to TBSprotected aspergillide A (4).


during the attempt to directly epimerize **2** into **1**, we chose the TBS-protected form of **2** (compound **3**, Scheme 1), the penultimate intermediate in Uenishi's and our syntheses of aspergillide B,<sup>3,6c</sup> as the substrate for the epimerization. Thus, the 3,7-trans isomer **3** was first subjected to DBU in toluene in the hope of obtaining the corresponding 3,7-cis isomer **4**, the TBS ether of **1**. The basic treatment, however, did not afford the desired product **4** even at elevated temperatures, resulting only in the recovery of the starting material **3**. The use of KOt-Bu as a stronger base also brought no fruitful outcome, giving only the starting material at room temperature or a complex mixture at 45 °C.<sup>8</sup>

Faced with the difficulty to epimerize the 3,7-trans macrolactone **3** into the corresponding cis-isomer **4**, we next planned to prepare 3,7-cis-substituted seco acid **5** beforehand and then macrolactonize it into **4** (Scheme 2). As a possible precursor of **5**, we chose 3,7-trans-substituted lactone **6** since it was known to be obtainable very efficiently from **7** and **8** in our previous synthesis of aspergillide B (**2**),<sup>2.6c</sup> and the requisite stereochemical inversion at the C3 position of **6** on its way to **5** was expected to be possible from literature precedents by conducting an appropriate epimerization reaction on a suitable intermediate before macrolactonization.<sup>9</sup>

The elaboration of **6** to **1** commenced with the reductive opening of the lactone ring of **6** with LiAlH<sub>4</sub> to give diol **9**. Protection of the two hydroxyl groups of **9** to bis-TBS ether **10** was followed by selective removal of the protecting group at the primary hydroxyl, affording **11** in 86% yield for the three steps (Scheme 3). Oxidation of the resulting alcohol with Dess–Martin's periodinane proceeded smoothly to furnish aldehyde **12**, which set the stage for the key transformation in the present synthesis, the epimerization at the C3 position of the 3,7-trans-substituted intermediate **12** to the corresponding **3**,7-cis isomer **13**. The conversion of **12** into **13** was realized very efficiently by the Massi–Dondoni protocol using proline as the epimerization catalyst.<sup>10</sup> Thus, the treatment of **12** with p-proline for 1 h at 0 °C and for an additional 3 h at 60 °C gave a 95:5 epimeric mixture of **13** and **12** in 81% yield favoring the de-



Scheme 2. Synthetic plan for aspergillide A (1) from known compound 6.



**Scheme 3.** Conversion of **6** into aspergillide A (**1**). Reagents and conditions: (a) LiAlH<sub>4</sub>, THF, 0 °C to rt, 1 h; (b) TBSOTf, Et<sub>3</sub>N, CH<sub>2</sub>Cl<sub>2</sub>, 0 °C to rt, 1 h; (c) CSA (0.2 equiv), CH<sub>2</sub>Cl<sub>2</sub>/MeOH, 0 °C, 1 h (86%, three steps); (d) Dess–Martin's periodinane, NaHCO<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, rt, 5 h (97%); (e) D-proline (0.3 equiv), MeOH, 0 °C, 1 h, then 60 °C, 3 h (81%); (f) DDQ, phosphate buffer (pH 7.0), CH<sub>2</sub>Cl<sub>2</sub>, rt, 8 h (80%); (g) NaClO<sub>2</sub>, NaH<sub>2</sub>PO<sub>4</sub>, 2-methyl-2-butene, *t*-BuOH/H<sub>2</sub>O, 0 °C, 7 h (97%); (h) Cl<sub>3</sub>C<sub>6</sub>H<sub>2</sub>COCl, Et<sub>3</sub>N, THF, 0 °C to rt, 2 h, then DMAP, PhMe, 80 °C, 8 h (30%); (i) TBAF, THF, rt, 2 h (76%).

sired 3,7-cis isomer **13**.<sup>11</sup> After deprotection of the PMB group of 13 by DDQ oxidation, the resulting product 14 was oxidized to the seco acid 5 by the Pinnick oxidation. Unexpectedly, the macrolactonization of **5** into **4** was found to be problematic in contrast to the case of the corresponding 3,7-trans seco acid, which underwent smooth macrolactonization under the Yamaguchi lactonization conditions and led, after deprotection, to aspergillide B (2) in previous synthetic studies.<sup>3,6c</sup> On treatment of **5** with 2-methyl-6-nitrobenzoic anhydride in the presence of DMAP in CH<sub>2</sub>Cl<sub>2</sub> at room temperature for 28 h (Shiina's method).<sup>12</sup> no desired product **4** was obtained, but instead dimeric macrodiolide **15** was isolated in 22% vield. Gerlach's modification of the Corev-Nicolaou macrolactonization (PySSPy, Ph<sub>3</sub>P, AgBF<sub>4</sub>, PhMe, 110 °C, 54 h)<sup>13</sup> and modified Mukaiyama's lactonization conditions (2-bromo-1ethylpyridinium tetrafluoroborate, Et<sub>3</sub>N, MeCN, 90 °C, 6 h)<sup>14</sup> both gave complex mixtures. The only successful result was obtained when the seco acid 5 was subjected to Yamaguchi's conditions (Cl<sub>3</sub>C<sub>6</sub>H<sub>2</sub>COCl, Et<sub>3</sub>N, THF, then DMAP, PhMe, 81 °C, 8 h; substrate concentration, 0.8 mM),<sup>15</sup> which gave the desired product **4** in 30% yield along with 19% of the dimeric product **15**.<sup>16,17</sup> Unfortunately, all attempts to improve the chemical yield of 4 by varying the reaction conditions (mainly, reaction temperature, and concentration) were unsuccessful and could not exceed the above-mentioned yield (30%). Finally, the TBS-protecting group of 4 was removed with TBAF to give aspergillide A (1) as a crystalline solid (mp 64.5–65.5 °C) after chromatographic purification. The specific rotation and spectral data of **1** were in good agreement with those reported in the literature.<sup>1,18</sup>

In conclusion, the first synthesis of aspergillide A (1) was accomplished from **6**, an intermediate in our total synthesis of aspergillide B, by using the proline-mediated epimerization of the 3,7-transsubstituted cyclic intermediate **12** into the corresponding cis-isomer **13** as the key step. Efforts to develop a more efficient synthetic route to **1**, including the improvement of the macrolactonization step, are now underway and will be reported in due course.

### Acknowledgments

We thank Ms. Yamada (Tohoku University) for measuring NMR and MS spectra. This work was supported, in part, by a Grant-inAid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 19380065).

#### **References and notes**

- 1. Kito, K.; Ookura, R.; Yoshida, S.; Namikoshi, M.; Ooi, T.; Kusumi, T. Org. Lett. 2008, 10, 225–228.
- 2. Nagasawa, T.; Kuwahara, S. Org. Lett. 2009, 11, 761-764.
- 3. Hande, S. M.; Uenishi, J. Tetrahedron Lett. 2009, 50, 189–192.
- 4. Ookura, R.; Kito, K.; Saito, Y.; Kusumi, T.; Ooi, T. Chem. Lett. 2009, 38, 384.
- Only two 14-membered lactones containing a 2,6-trans-substituted tetrahydropyran ring have been reported: (a) Shinonaga, H.; Kawamura, Y.; Ikeda, A.; Aoki, M.; Sakai, N.; Fujimoto, N.; Kawashima, A. *Tetrhedron Lett.* **2009**, 50, 108–110; (b) Zacuto, M. J.; Leighton, J. L. *Org. Lett.* **2005**, 7, 5525–5527.
- (a) Díaz-Oltra, S.; Angulo-Pachón, C. A.; Kneeteman, M. N.; Murga, J.; Carda, M.; Marco, J. A. Tetrahedron Lett. 2009, 50, 3783–3785; (b) Liu, J.; Xu, K.; He, J.; Zhang, L.; Pan, X.; She, X. J. Org. Chem. 2009, 74, 5063–5066; (c) Nagasawa, T.; Kuwahara, S. Biosci. Biotechnol. Biochem. 2009, 73, 1893–1894.
- 7. Panarese, J. D.; Waters, S. P. Org. Lett. 2009, 11, 5086–8088.
- An attempt to directly isomerize 2 to 1 was conducted by Ooi and co-workers using silica gel as an acidic catalyst, but the treatment did not yield even a trace of 1 (see Ref. 4).
- For examples of related epimerization reactions, see: (a) Tatsuta, K.; Suzuki, Y.; Toriumi, T.; Furuya, Y.; Hosokawa, S. *Tetrahedron Lett.* **2007**, *48*, 8018–8021; (b) Hinkle, R. J.; Lian, Y.; Litvinas, N. D.; Jenkins, A. T.; Burnette, D. C. *Tetrahedron* **2005**, *61*, 11679–11685; (c) Wang, Z.; Shao, H.; Lacroix, E.; Wu, S.-H.; Jennings, H. J.; Zou, W. J. Org. Chem. **2003**, *68*, 8097–8105; (d) Shao, H.; Wang, Z.; Lacroix,

E.; Wu, S.-H.; Jennings, H. J.; Zou, W. *J. Am Chem. Soc.* **2002**, *124*, 2130–2131; (e) Michelet, V.; Adiey, K.; Bulic, B.; Genêt, J.-P.; Dujardin, G.; Rossignol, S.; Brown, E.; Toupet, L. *Eur. J. Org. Chem.* **1999**, 2885–2892.

- 10. Massi, A.; Nuzzi, A.; Dondoni, A. J. Org. Chem. 2007, 72, 10279-10282.
- 11. The use of L-proline gave almost the same result as that of D-proline.
- 12. (a) Shiina, I.; Kubota, M.; Ibuka, R. *Tetrahedron Lett.* **2002**, 43, 7535–7539; (b) Shiina, I.; Kubota, M.; Oshiumi, H.; Hashizume, M. *J. Org. Chem.* **2004**, 69, 1822–1830.
- Gerlach, H.; Thalmann, A. *Helv. Chim. Acta* **1974**, *57*, 2661–2663.
  Smith, A. B., III; Dong, S.; Brenneman, J. B.; Fox, R. J. *J. Am. Chem. Soc.* **2009**, *131*,
- Januti, A. B., III, Dolig, S., Brenneman, J. B., Tox, K. J. J. Ant. Chem. Soc. 2009, 151 12109–12111.
   Inanaga I. Hirata K. Saeki H. Katsuki T. Yamaguchi M. Bull Chem. Soc. Inn.
- Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989–1993.
- 16. It would be worth mentioning that, in addition to **4** and **15**, we could also isolate a trace amount of **3**, the C3-epimer of **4**, which would probably be formed via a retro-oxy-Michael/oxy-Michael sequence at the stage of a mixed anhydride intermediate and/or after formation of **4**.
- For a recent review on macrolactonization, see: Parenty, A.; Moreau, X.; Campagne, J.-M. Chem. Rev. 2006, 106, 911–939.
- 18. *Physical and spectral data for* **1**: mp 64.5–65.5 °C;  $|x|_{2}^{23}$  –59 (*c* 0.13, CHCl<sub>3</sub>)(lit.<sup>1</sup>  $|x|_{2}^{17}$  –59.5 (*c* 0.45, CHCl<sub>3</sub>); IR: *v* 3495 (m), 1735 (s), 1665 (w), 1011 (s), 976 (s); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 1.21 (3H, *d*, *J* = 6.8 Hz), 1.38–1.44 (1H, m), 1.48–1.57 (2H, m), 1.70–1.76 (1H, m), 1.79–1.87 (1H, m), 1.89–1.99 (2H, m), 2.08–2.17 (1H, m), 2.17–2.26 (2H, m), 2.28–2.34 (1H, m), 2.40 (1H, dd, *J* = 15.6, 4.4 Hz), 2.65 (1H, dd, *J* = 15.6, 13.2 Hz), 3.59 (1H, br s), 4.43–4.29 (1H, m), 4.27 (1H, br s), 4.93–5.00 (1H, m), 5.72 (1H, dd, *J* = 15.1, 9.3, 3.4 Hz), 5.81 (1H, ddd, *J* = 15.1, 8.8, 2.0 Hz); <sup>13</sup>C NMR (125 MHz) δ 18.6, 21.7, 22.0, 23.7, 31.1, 32.2, 40.5, 66.8, 71.2, 71.5, 74.0, 132.1, 137.1, 170.0; HRMS (EI) *m/z* calcd for C<sub>14</sub>H<sub>22</sub>O<sub>4</sub> (M<sup>+</sup>) 252.1518, found 252.1522.